Novel pH-dependent regulation of human cytosolic sialidase 2 (NEU2) activities by siastatin B and structural prediction of NEU2/siastatin B complex

نویسندگان

  • M. Motiur Rahman
  • Takatsugu Hirokawa
  • Daisuke Tsuji
  • Jun Tsukimoto
  • Seiji Hitaoka
  • Tatsusada Yoshida
  • Hiroshi Chuman
  • Kohji Itoh
چکیده

Human cytosolic sialidase (Neuraminidase 2, NEU2) catalyzes the removal of terminal sialic acid residues from glycoconjugates. The effect of siastatin B, known as a sialidase inhibitor, has not been evaluated toward human NEU2 yet. We studied the regulation of NEU2 activity by siastatin B in vitro and predicted the interaction in silico. Inhibitory and stabilizing effects of siastatin B were analyzed in comparison with DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) toward 4-umbelliferyl N-acetylneuraminic acid (4-MU-NANA)- and α2,3-sialyllactose-degrading activities of recombinant NEU2 produced by E. coli GST-fusion gene expression. Siastatin B exhibited to have higher competitive inhibitory activity toward NEU2 than DANA at pH 4.0. We also revealed the stabilizing effect of siastatin B toward NEU2 activity at acidic pH. Docking model was constructed on the basis of the crystal structure of NEU2/DANA complex (PDB code: 1VCU). Molecular docking predicted that electrostatic neutralization of E111 and E218 residues of the active pocket should not prevent siastatin B from binding at pH 4.0. The imino group (1NH) of siastatin B can also interact with D46, neutralized at pH 4.0. Siastatin B was suggested to have higher affinity to the active pocket of NEU2 than DANA, although it has no C7-9 fragment corresponding to that of DANA. We demonstrated here the pH-dependent affinity of siastatin B toward NEU2 to exhibit potent inhibitory and stabilizing activities. Molecular interaction between siastatin B and NEU2 will be utilized to develop specific inhibitors and stabilizers (chemical chaperones) not only for NEU2 but also the other human sialidases, including NEU1, NEU3 and NEU4, based on homology modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a novel human sialidase encoded by the NEU2 gene.

Sialidases (E.C.3.2.1.18) belong to a group of glycohydrolytic enzymes, widely distributed in nature, which remove sialic acid residues from glycoproteins and glycolipids. All of the sialidase so far characterized at the molecular level share an Asp block, repeated three to five times in the primary structure, and an F/YRIP sequence motif which is part of the active site. Using a sequence homol...

متن کامل

Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling.

Chronic myeloid leukemia is a hematopoietic stem cell cancer, originated by the perpetually "switched on" activity of the tyrosine kinase Bcr-Abl, leading to uncontrolled proliferation and insensitivity to apoptotic stimuli. The genetic phenotype of myeloid leukemic K562 cells includes the suppression of cytosolic sialidase Neu2. Neu2 transfection in K562 cells induced a marked decrease (-30% a...

متن کامل

Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2.

Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificit...

متن کامل

Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies.

Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly ...

متن کامل

Purification and Characterization of a Sialidase Inhibitor

Siastatins A and B were isolated as part of a program designed to find Streptomyces-produced inhibitors of sialidase from Clostridium perfringens. Siastatin A was more effective than was siastatin B in the inhibition of sialidases prepared from Cl. perfringens and chicken chorioallantoic membrane. However, siastatin B was a stronger inhibitor of sialidases prepared from streptomyces and rat org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015